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Superconducting order parameter

A(r,r'") = g(r —l")<7,U(l')l/J(r')>, A(r —l")=fdk A(K) o)

in S-wave superconductors Ar=r') = A(r)
in D- and P-wave superconductors Alr=r')=0

D-wave (singlet) order parameter P-wave (p+ip)
can be chosen as real order parameter
_@_ A(p) < p. + p,

p.+ D, =D;

the system has an isotropic gap



Spectrum of electrons in magnetic field
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Chern-Simons theory of quantum Hall effect
(Fermion version k=2)

e hc
Vjevj—z%a(rj) a=k?vj2ajk, a, =Imln(z, - z,)
j#

b, =V, xa, =k¢025(ri—rj)

hc
¢o =7

e

b and a are statistical magnetic field and vector potential.

The statistical phase can be interpreted as an Aharonov-Bohm effect:
when charge is moving around the flux (k¢,) it acquires a phase

k@,



Halperin- Lee -Read (HLR) state:

“Fermi liquid” of composite Fermions, k=2

At the filling factor v="- the statistical and the external magnetic fields cancel each
otherlB#B=0, and on the mean field level the system is in a Fermi liquid state without

magnetic field.
i’vezLH. ~ez~ B’
m n "L, mL
Mean field electrodynamics of HLR state
b =k¢0(,0(l‘)—,01/2), - (kgy/c)j; = €,e,

Ohm’ s law for composite Fermions

j=o(E+e)
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Fig. 2. Hall resistance p,, at 20 mK in the region around =3,
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More-Read Pfaffian 5/2 QH state,

weakly coupled (BCS) P-wave superconductivity of
composite fermions
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Mean field Gorkov equations

(ind, - e(@+ AW + ;’—2{- iV — (@8 A)F W+ A@r,r )W (r')=0
m

A(r,r') = g(r - r'X‘P(r')IP(r»

i) = 5 = [we v () (7)< Ao

mi

Z is a unit vector perpendicular to the plane



Correspondence between the perfect conductivity of the

superconductors and the quantization of the Hall conductance:

Meissner effect—--incompressibility

Quantized vortices------fractionally charged quasiparticles
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Two types of conventional superconductors
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a, 1s the Bohr radius

n, 1sthe electron concentration

a 1s the fine structure constant

A << E_ 1s the gap

Type 1: A <& surface energyis positive

Type 2: A > & surface energy is negative



Two characteristic lengths in the pfaffian state

1. Coherence length &£ = |VA—F|
2. Penetration length of "thestatistical magneticfield" A= L,

L, 1s the magnetic length

Two characteristic energy scales

The gap |A]
hZ
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mL,

The Fermi energy FE, =



Two possible types of quantum Hall fluids

a) Type 2 QH fluids where roughly E~A .
In this case the surface energy between HLR and Pfaffian
states is negative. Consequently density deviations are
accommodated by the introduction of single quasiparticles/votices

b) Type | QH state: E>>A , (or E >> A)
In this case the surface energy between is positive.
Quasiparticles (vortices) agglomerate and form multi-particle
bound states

electronic microemulsions



How do we know that in the Pfaffian state E>>A ?

1.Numerical simulations:

H. Lu, S. das Sarma, K. Park, cond-mat. 1008.1587:

P. Rondson, A. E. Feiguin, C. Nayak, cond. mat. 1008.4173;

G. Moller, A. Woijs, N. Cooper, cond-mat. 1009.4956

E/A~10-30

2.a) Activation energy in transport experiments approximately two
orders of magnitude smaller than E. . Sometimes decreases further as
a function of gate voltage and parallel magnetic field.

b) the characteristic temperature where 5/2 plateau of QHE
disappears is much smaller then E¢

" : J.P. Eisenstein, R.L. Willet, H.L. Stormer,
. L.N. Pffiffer, K.W. West 1990

Fig. 4. Energy gap 4 versus total magnetic field B,,,. Straight line
gives g-factor g=0.56.
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Fig. 4. Energy gap 4 versus total magnetic field B,.,. Straight line
gives g-factor g=0.56.
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If E>>A vortices agglomerate into big bubbles
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N, is the number of electrons in the bubble

If NE2 ~1 the system is in “electronic microemulsion phase”
which can be visualized as a mixture of HLR and Pfaffian
on mesoscopic scale.



Schematic phase diagram
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FIG. 1: Schematic phase diagram of the Pfaffian phases with
fixed Coulomb interactions as a function of density devia-
tion from v = 5/2 (pseudomagnetic field) and the Landau-
Ginzburg parameter, A/§. Typical configurations of the dif-
ferent inhomogeneous phases are shown, with red representing
the Pfaffian and white the metallic phase. For short-ranged
interactions, the microemulsion phases in the Type I region
are replaced by a phase-separated intermediate state, with
the Pfaffian fraction decreasing continuously to zero as the
boundary to the composite fermion metal is approached.
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hydrodynamics of the Pfaffian state. Penetration of electric

field into the system of superconducting composite Fermions
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— o at the critical point




Proximity effect at the HLR-pfaffian states boundary
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Transition between the HLR and Pfaffian state Ohm’ s law takes place over

the distance of order L, , which diverges at the critical point
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® is the imbalance of populations of electron and hole branches of spectrum
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Elastic electron scattering destroys p-wave superconductivity
when the electron mean free path | ~§ becomes of order of
the superconducting coherence length. A generic feature of
the disordered quantum transitions is that the characteristic
inter-puddle distance is much bigger than their characteristic

size.
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a criterion of a quantum (T=0) phase transition:

x; is the susceptibility of a puddle

J; is the Joshepson coupling between puddles
X, and J; are random quantities



Susceptibility of a puddle

R~Rc
X = erff 3D Kosterlitz
x=e" G2p 2D, Feigelman, Larkin, Skvortsov

G.¢ and G, are conductances of a cube of HLR metal of size R,
and 2D film respectively

susceptibility is an exponential function of G >>1



Inter-puddle joshepson coupling

At T=0 Josephson coupling between the puddles decay
with the inter-puddle distance slowly.

Jijoclx
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consequently, at the point of superconductor-metal transition
the distance between the puddles is parametrically bigger
than their size.

In disordered systems at large distances the sign

of the Joshepson coupling is random.
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An effective model of Joshepson junctions

= EJU cos()(l. — )(j) + quantum kinetic energy

i=]

Since J; have random sign, near the critical point
the system is Pfaffian (p-wave superconducting) glass

Pfaffian Pfaffian glass HLR

> disorder




Conclusion:
Weakly coupled Pfaffian state is equivalent to
Type 1 p+ip superconducting state.
In this state vortices attract each other and
agglomerate into big bubbles. There is a

quantum phase transition between HLR and
Pfaffian states as a function of disorder



